mTORC2 regulates cardiac response to stress by inhibiting MST1.

نویسندگان

  • Sebastiano Sciarretta
  • Peiyong Zhai
  • Yasuhiro Maejima
  • Dominic P Del Re
  • Narayani Nagarajan
  • Derek Yee
  • Tong Liu
  • Mark A Magnuson
  • Massimo Volpe
  • Giacomo Frati
  • Hong Li
  • Junichi Sadoshima
چکیده

The mTOR and Hippo pathways have recently emerged as the major signaling transduction cascades regulating organ size and cellular homeostasis. However, direct crosstalk between two pathways is yet to be determined. Here, we demonstrate that mTORC2 is a direct negative regulator of the MST1 kinase, a key component of the Hippo pathway. mTORC2 phosphorylates MST1 at serine 438 in the SARAH domain, thereby reducing its homodimerization and activity. We found that Rictor/mTORC2 preserves cardiac structure and function by restraining the activity of MST1 kinase. Cardiac-specific mTORC2 disruption through Rictor deletion leads to a marked activation of MST1 that, in turn, promotes cardiac dysfunction and dilation, impairing cardiac growth and adaptation in response to pressure overload. In conclusion, our study demonstrates the existence of a direct crosstalk between mTORC2 and MST1 that is critical for cardiac cell survival and growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mst1 regulates hepatic lipid metabolism by inhibiting Sirt1 ubiquitination in mice.

Previous study showed mammalian Ste20-like kinase (Mst1) may serve as target for the development of new therapies for diabetes. However, the function of Mst1 involved in liver lipid metabolism has remained elusive. In this study, we report that the liver of Mst1 knockout (Mst1(-/-)) mice showed more severe liver metabolic damage under fasting and high-fat diet than that of control mice. And fas...

متن کامل

Lats2 is a negative regulator of myocyte size in the heart.

Mammalian sterile 20-like kinase (Mst)1 plays an important role in mediating apoptosis and inhibiting hypertrophy in the heart. Because Hippo, a Drosophila homolog of Mst1, forms a signaling complex with Warts, a serine/threonine kinase, which in turn stimulates cell death and inhibits cell proliferation, mammalian homologs of Warts, termed Lats1 and Lats2, may mediate the function of Mst1. We ...

متن کامل

Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL.

The Hippo pathway, evolutionarily conserved from flies to mammals, promotes cell death and inhibits cell proliferation to regulate organ size. The core component of this cascade, Mst1 in mammalian cells, is sufficient to promote apoptosis. However, the mechanisms underlying both its activation and its ability to elicit cell death remain largely undefined. We here identify a signaling cassette i...

متن کامل

Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy.

Activation of mammalian sterile 20-like kinase 1 (Mst1) by genotoxic compounds is known to stimulate apoptosis in some cell types. The importance of Mst1 in cell death caused by clinically relevant pathologic stimuli is unknown, however. In this study, we show that Mst1 is a prominent myelin basic protein kinase activated by proapoptotic stimuli in cardiac myocytes and that Mst1 causes cardiac ...

متن کامل

Mst1-FoxO Signaling Protects Naïve T Lymphocytes from Cellular Oxidative Stress in Mice

BACKGROUND The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. Ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2015